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ABSTRACT Unmanned aerial vehicles (UAVs) are playing an increasingly important role in people’s daily
lives due to their low cost of operation, low requirements for ground support, high maneuverability, high
environmental adaptability, and high safety. Yet UAV path planning under various safety risks, such as crash
and collision, is not an easy task, due to the complicated and dynamic nature of path environments. Therefore,
developing an efficient and flexible algorithm for UAV path planning has become inevitable. Aimed at
quality-oriented UAV path planning, this paper is designed to analyze UAV path planning from two aspects:
global static planning and local dynamic hierarchical planning. Through a theoretical and mathematical
approach, a three-dimensional UAV path planning model was established. Based on the A∗ algorithm, the
search strategy, the step size, and the cost function were improved, and the OPEN set was simplified, thereby
shortening the planning time and greatly improving the execution efficiency of the algorithm. Moreover,
a dynamic exploration factor was added to the exploration mechanism of Q-learning to solve the exploration-
exploitation dilemma of Q-learning to adapt to the local dynamic path adjustment for UAVs. The global-local
hybrid UAV path planning algorithm was formed by combining the two. The simulation results indicate that
the proposed planning model and algorithm can efficiently solve the problem of UAV path planning, improve
the path quality, and can be a significant reference for solving other problems related to path planning, such
as the reliability, security, and safety of UAV, when embedded into the heuristic function of the proposed
algorithm.

INDEX TERMS Unmanned aerial vehicle, quality-oriented path planning, A∗ algorithm, reinforcement
learning, hierarchical planning.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are aircraft that can be con-
trolled by a ground station or via onboard electronic equip-
ment and can be fully or partially autonomous. With high
maneuverability and good concealment, UAVs are increas-
ingly vital in people’s daily lives. At present, the typical uses
of UAVs include surveillance, rescue, delivery, communica-
tion relay, and airborne early warning [1].

According to whether the obstacle information is known,
UAV path planning can be divided into two categories: static
planning, in which the locations of all obstacles and threats
are known before planning andwhereby a reasonable path can
be planned before UAV take-off [2]; and dynamic planning,
in which the UAV needs to deal with uncertain obstacles or
unexpected threats by dynamically resolving the conflicts.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Steven Li .

Dynamic path planning involves more complex issues and
can improve UAV flight efficiency [3].

The existing methods for path planning can be divided
into numerical optimization, potential field-based method,
heuristics (classical heuristics and group intelligence algo-
rithms), sampling-based method, and deep reinforcement
learning [4]–[6]. Table 1 illustrates the characteristics of all
the above mentioned algorithms.

Given the status quo, UAV path planning mainly faces the
following key technical challenges:

1) Smart algorithms commonly used for UAV path plan-
ning often take a long time due to their high complexity [7].
For this reason, these algorithms are time-consuming and thus
difficult to implement when solving large-scale schemes of
UAV path planning.

2) UAV path planning is subject to many constraints
in practice. Restricted by the high complexity and
time-consuming process of themodel, the existing algorithms
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TABLE 1. Path planning methods.

can be used only for experimental research based on simpli-
fied models [8]. Thus, this approach cannot truly reflect the
actual needs of UAV path planning.

In this paper, through systematic investigation of the prob-
lems in UAV path planning, a global-local UAV path plan-
ning algorithm based on reinforcement learning was designed
according to the simulated scenarios. On combining the con-
straints and targets, UAV path planning was achieved, and
related experimental verification was performed.

The preceding sections of the paper are arranged as
follows. Section 2 introduces the design and modeling
considerations of UAV path planning. Section 3 presents
the proposed solution and algorithmic approach for UAV
global-local path planning. The experimental design and
result analysis is explained in Section 4. Finally, we con-
clude the paper and elaborate on potential future directions
in Section 5.

II. MODELING FOR UAV PATH PLANNING
A. PROBLEM DESCRIPTION
The UAV path planning problem can be described as fol-
lows: There are N UAVs, M types of loads, and K static or
dynamic obstacles, and the UAVs can perform tasks such
as surveillance, rescue, and delivery. To satisfy the UAV
kinematic constraints and various resource constraints, one
should choose a path that passes through all target task nodes
and can dynamically adjust in real time when encountering
obstacles to shorten the task duration and improve the success
rate. In this paper, the task nodes were abstracted as the path
nodes on the UAVflight path, and the final planned result was
a sequence of path nodes.

The path planning schemes are shown in Figure 1.
For UAV path planning, the scheme designed in this paper

consists of two levels: the global path planning based on
modified A∗ and the local dynamic path planning based on
modified Q-learning.

B. CONSTRAINTS
1) Vertical maximum turning angle constraint

FIGURE 1. Global-local hybrid path planning scheme.

Let the present path node be Pi(xi, yi, zi) and the subse-
quent one be Pi+1 (xi+1, yi+1, zi+1). Then the maximum turn-
ing angle constraint in the vertical direction can be expressed
as

tan−1

 |zi+1 − zi|√
(xi+1 − xi)2 + (yi+1 − yi)2

 ≤ θv,
(i = 1, 2, . . . , n) (1)

where θv denotes the maximum turning angle of the UAV in
the vertical direction.

2) Horizontal maximum turning angle constraint
Let the present path node be Pi(xi, yi, zi) and the sub-

sequent one be Pi+1(xi+1, yi+1, zi+1). Then the maximum
turning angle constraint in the horizontal direction can be
expressed as

tan−1
(
(yi+1 − yi)
(xi+1 − xi)

)
≤ θl, (i = 1, 2, . . . , n) (2)

where θl denotes the maximum turning angle of the UAV in
the horizontal direction.

3) Horizontal flight speed constraint
The horizontal flight speed constraint of the UAV can be

expressed as

Vlmin ≤ Vi ≤ Vlmax (3)

where Vlmin denotes the minimum horizontal flight speed
(excluding the starting phase) of the UAV, Vi denotes the
current horizontal flight speed of the UAV, and Vlmax denotes
the maximum horizontal flight speed of the UAV.

4) Climbing speed constraint
The climbing speed constraint of the UAV can be expressed

as

0 ≤ Vi ≤ Vvmax (4)

where Vi denotes the current climbing speed of the UAV and
Vvmax denotes the maximum climbing speed of the UAV.

5) Minimum turning radius constraint
The minimum turning radius constraint can be expressed

as

Ri ≥ Rmax , (i = 1, 2, . . . , n) (5)
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where Ri denotes the turning radius at the i-th turn in the path
planning result andRmax denotes themaximum turning radius
of the UAV. Rmin is calculated as

Rmin =
V 2
min

g×
√
n2ymax − 1

(6)

where V 2
min denotes the minimum flight speed of the UAV

and n2ymax denotes the maximum normal phase overload of
the UAV.

6) Farthest flight length constraint (maximum flight time
constraint)

The farthest flight length constraint (the maximum flight
time constraint) can be expressed as

1V ∗ Ti ≤ Lmax (Ti< Tmax) (7)

where 1V denotes the average speed of the UAV during
flight, Ti denotes the flight time, Tmax denotes the maximum
flight time, and Lmax denotes the maximum allowable flight
length.

7) Flight height constraint
The flight height constraint can be expressed as

Hmin ≤ Hi ≤ Hmax , (i = 1, . . . , n) (8)

where Hmin denotes the minimum flight height (excluding
the take-off and landing phases) of the UAV, Hi denotes the
current UAV flight height, and Hmax denotes the maximum
flight height of the UAV.

8) The total energy consumption of any UAV executing
tasks shall not exceed its total energy and can be expressed
as

Ei ≤ E, (i = 1, 2, . . . , n) (9)

where Ei denotes the energy consumption of the i-th UAV and
E denotes the total energy.

C. COST FUNCTION
1) ENERGY CONSUMPTION COST
The energy consumption cost of the UAV can be expressed as

Coste =
∑N−1

i=1
k ∗ li (i ≥ 2) (10)

where Coste denotes the energy consumption cost, k denotes
the ratio of energy consumption to flight length,N denotes the
number of nodes in the resultant path of UAV path planning,
and li denotes the distance between the i-th node and the i+
1 node.

2) THREAT AREA COST
There are two radii for the threats: One is the detection radius
r0, and the other is the reaction radius r1. Then the UAV threat
area cost can be expressed as

Cost t (x) =



0, x > r0

k0
x − r1
r0 − r1

, r0 ≥ x ≥ r1

k1
x
r1
, x ≤ r1

(11)

where x denotes the distance between the UAV and the threat
and Cost t (x) denotes the threat cost. The surrounding area
of the threat is divided according to the distance from the
threat. That is, the closer, the more dangerous; the farther, the
safer. However, according to the principle of high risk and
high return, the closer the path to the threat area, the smaller
the cost in the path.

3) FINAL TARGET FUNCTION

min : δ1Coste + δ2Cost t (12)

where Coste denotes the energy consumption cost of UAV
path planning mentioned above, which is positively related to
the length of the path planned; Cost t denotes the threat area
cost of the enemy threat environment to the UAV; δ1 denotes
the weight coefficient of the energy consumption cost; and
δ2 denotes the weight coefficient of the threat area cost. The
target is to minimize the sum of these two cost functions.

III. DESIGN OF UAV GLOBAL-LOCAL PATH PLANNING
ALGORITHM
A. GLOBAL PATH PLANNING BASED ON MODIFIED A∗

1) A∗ ALGORITHM
The greatest difference between the A∗ algorithm and other
path planning algorithms is the composition of the heuristic
function [9]. Let f (n) be the heuristic function of the A∗

algorithm, as shown in Equation 13:

f (n) = g(n)+ h(n) (13)

where n denotes the current node, g(n) denotes the actual cost
value from the starting point to the current point n, and h(n)
denotes the estimated cost value from the current node n to
the end point. The design of the cost function in the heuristic
function of the A∗ algorithm is directly related to the search
performance of the A∗ algorithm.

2) DYNAMIC WEIGHT ADJUSTMENT BASED ON Q-LEARNING
Because the actual cost information g(n) is not considered
in the A∗ algorithm cost function, the path cost of the final
planning result will not be the global minimum. In this
paper, a cost function of dynamic weight adjustment based
on Q-learning was proposed and can be calculated as

f (n) = g(n)+ αh(n) (14)

where α is dynamically adjusted by the Q-learning algorithm
to reduce the weight of the estimated cost and increase the
weight of the actual cost, which ensures that the algorithm
can obtain the path with the minimum comprehensive cost.
Moreover, the guiding role of the heuristic factor is retained,
which does not slow down the search speed for the path
considerably and ensures planning efficiency.

The flow of the global path planning algorithm based on
modified A∗ is shown in Figure 2.

The pseudo code of modified A∗ is as follows:
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FIGURE 2. Flow chart of modified A∗.

Algorithm 1: Modified A∗

Input: search area, task node Output: path node
Initialize: Q-learning elements, UAV information, con-
straint information, OPEN table (two-way), CLOSED
table (two-way)
While forward search and reverse search have not met
do

Place the forward search node into the forward open
table

Place the reverse search node into the reverse open
table

Place the node with the minimum cost from the
forward open table into the forward closed table,
delete it from the forward open table, and set the
corresponding parent-child relationship
Place the node with the minimum cost from the
reverse open table into the reverse closed table,
delete it from the reverse open table, and set the
corresponding parent-child relationship
if (forward and reverse search have not met) then{
continue;
}else{

break;
}

End While

B. LOCAL DYNAMIC PATH PLANNING BASED ON
Q-LEARNING WITH MODIFIED EXPLORATION
MECHANISM
1) THREE-ELEMENT DESIGN OF MODIFIED Q-LEARNING
ALGORITHM
• State space

The state space of modified Q-learning dynamically deter-
mines the state according to the UAV path meshing range.

• Action space
According to the Q-value table of the Q-learning algorithm,
the corresponding action is selected to increase or decrease
in the corresponding state to obtain the state of the next phase.
The action space is defined as follows:

A = {a1, a2, . . . , a17} (15)

• Reward mechanism
A reward function that meets the actual application scenario
for the agent is designed by analyzing the state after the
agent chooses an action. The reward function is calculated
as follows:

r (i) =


C1, Si = Se
−C1, dabs = 0
0, other scenario

(16)

where i denotes the current iteration steps of the algorithm,
r (i) denotes the reward function, Si denotes the current state
of the agent, and Se denotes the target state. The distance
between the agent and the nearest obstacle is denoted by dabs.
C1 is a constant that denotes the reward value obtained after
the agent interacts with the environment. Such settings of
reward function can be too simple. In most cases, the agent
cannot get feedback from the environment and lacks key
guidance. For this reason, the time it takes to complete tasks
is greatly increased, and energy consumption also increases
accordingly.

A new reward function was designed in this paper to
solve the abovementioned problems, which categorizes the
state–action pair of the agent and returns different reward
values for different scenarios. The new reward function adds
scenarios: close to the target position and far away from the
target position. If the decision made by the agent keeps it
away from the target position and no collision occurs, then a
small negative feedback value is given to the agent; if the deci-
sion made by the agent brings it close to the target position
and no collision occurs, then a small positive feedback value
is given to the agent. The two newly added scenarios take
into account the distance between the agent and the obstacles
to dynamically set the reward and punishment function. The
modified reward function is calculated as follows:

r (i) =



C1, Si = Se

−C1, dabs = 0

C2 ∗
di
D
, di < di−1, dabs 6= 0

−C2 ∗
di
D
, di > di−1, dabs 6= 0

−C3 ∗
di
D
, other

(17)

where di denotes the distance between the agent and the target
location and dabs denotes the distance between the agent and
the closest obstacle. C1, C2, and C3 are all constants that
denote the specific reward values obtained after the agent
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interacts with the external environment in different scenarios,
C1 > C2 > C3.

2) DYNAMIC EXPLORATION FACTOR
The exploration strategies commonly used in the classic
Q-learning algorithm include greedy strategy and ε greedy
strategy [10]–[16]. The greedy strategy is to choose the action
that maximizes the value for each step in each iteration of the
algorithm, that is,

Q (si, ai) = argmaxai+1Q (si+1, ai+1) (18)

The ε greedy strategy sets an exploration factor ε to add
a random strategy when selecting actions in the algorithm
iteration process so that the agent has the probability of ε to
choose the action that is most conducive to completing the
tasks or maximizes the value. There is a probability of 1− ε
to randomly select an action from the action space, that is,

Q (si, ai)

 argmaxai+1Q (si+1, ai+1) , x ≤ ε

aiεA x > ε
(19)

However, the ε greedy strategy also has the problem of
unbalanced exploration-exploitation because the value of ε
is fixed. Therefore, an exploration method that dynamically
adjusts the exploration factor was proposed, which can mod-
ify the exploration and exploitation process of the Q-learning
algorithm and dynamically adjust in phases, that is,

ε =



ε1 ∗

(
k

step1

)
, k ≤ step1

ε1 + ε2 ∗

(
k − step1
step2

)
step1 ≤ k ≤ step2

ε = ε2 + ε3 ∗

(
k − step2
step3

)
step2 ≤ k ≤ step3

(20)

where ε1 denotes the value of the initial exploration factor
ε in the exploration phase, ε1 ∈ (0, 0.5) ; ε2 denotes the
value of the initial exploration factor ε in the exploration-
exploitation phase, ε2 ∈ (0, 1) ; ε3 denotes the value of
the initial exploration factor ε in the exploitation phase,
ε3 ∈ (0.5, 1); k denotes the current number of iterations
of the Q-learning algorithm; step1 denotes the maximum
number of iterations of the algorithm in the exploration phase;
step2 denotes the maximum number of iterations of the algo-
rithm in the exploration-exploitation phase; and step3 denotes
the maximum number of iterations of the algorithm in the
exploitation phase.
k ≤ step1 indicates that the algorithm should be in the

exploration phase of experience accumulation. In this phase,
because the algorithm has just been iterated, the agent knows
nothing about the information of the environment, as well
as about how to complete the tasks or maximize the value.
In this case, the agent’s first choice is to quickly explore the
surrounding environment.

step1 ≤ k ≤ step2 indicates that the algorithm should be
in the exploration and exploitation phase. In this phase, the
agent makes appropriate use of the known environment and
accumulated experience in the process of exploration to com-
plete tasks faster or maximize the value. However, because
the agent’s knowledge of the environment has not yet met the
requirements, it is necessary to use existing experience while
exploring the unfamiliar environment as much as possible.

The pseudo code of modified Q-learning is as follows:

Algorithm 2: Modified Q-Learning
Input: search area, tasks node Output: path node
Initialize: Q table, UAV information, constraint informa-
tion, action space A = {a1, a2, . . . , ai}, action-value func-
tion Q (si, ai), where si ∈ S, ai ∈ A
While S non-terminal state do

Initialize the state space S = {s1, s2, . . . , si}
for each step in each round do # the direction of UAV

that can be taken in three-dimensional space
Use the modified search strategy to select an action
Take the action selected in the previous step to obtain

the feedback value ri and the new state si+1
(si, ai) = Q (si, ai) +

α
(
ri + γmaxai+1Q (si+1, ai+1)−

Q (si, ai))
si← si+1
End For

End While

step2 ≤ k ≤ step3 indicates that the algorithm has accu-
mulated enough experience and is in the phase of exploiting
the experience. In this phase, the agent uses these experiences
as much as possible to achieve the goal of completing tasks
quickly or maximizing the value. At this time, the value of
exploration factor ε becomes greater and approaches 1 as the
number of iterations increases.

3) Flow of local dynamic path planning algorithm based on
modified exploration mechanism as shown in Figure 3.

IV. SIMULATION EXPERIMENTS
Python was used to perform simulations to verify the perfor-
mance of the aforementioned global path planning based on
modified A∗ and the local dynamic path planning algorithm
based on Q-learning with a modified exploration mechanism.
Simulation experiments of path planning were performed on
the proposed fusion algorithm using Python, and the algo-
rithm performancewas compared before and after fusion. The
system configurations for simulation experiments are shown
in Table 2.

A. EXPERIMENTAL DESIGN AND ANALYSIS
Scheme 1: The grid size divided by the grid method is
50∗50∗10, with a total of 25,000 path nodes. The number
of static obstacles is randomly set to 1,250, accounting for
5% of the total nodes. The three-dimensional position coor-
dinates of the starting point of the task are set as the origin
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FIGURE 3. Flow chart of modified Q-learning.

TABLE 2. Configuration of the system.

S (0, 0, 0) of the grid, and the end point coordinates are
set as E (50, 50, 10). The simulation results are shown in
Figures 4 and 5.

Scheme 2: The grid size divided by the grid method is
50∗50∗50, with a total of 125,000 path nodes. The number
of static obstacles is randomly set to 6,250, accounting for
5% of the total nodes. The three-dimensional position coor-
dinates of the starting point of the task are set as the origin

FIGURE 4. Time consumption between algorithms in scheme 1.

FIGURE 5. Number of path nodes between algorithms in scheme 1.

FIGURE 6. Time consumption between algorithms in scheme 2.

S (0, 0, 0) of the grid, and the end point coordinates are
set as E (50, 50, 50). The simulation results are shown in
Figures 6 and 7.

Scheme 3: The grid size divided by the grid method is
100∗100∗50, with a total of 50,000 path nodes. The number
of static obstacles is randomly set to 25,000, accounting
for 5% of the total nodes. The three-dimensional position
coordinates of the starting point of the task are set as the
origin S (0, 0, 0) of the grid, and the end point coordinates
are set as E (100, 100, 50). The simulation results are shown
in Figures 8 and 9.
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FIGURE 7. Number of path nodes between algorithms in scheme 2.

FIGURE 8. Time consumption between algorithms in scheme 3.

FIGURE 9. Number of path nodes between algorithms in scheme 3.

Path planningwas simulated in the established terrainmod-
eling environment. The path planning performances of the
modified A∗ algorithm (BiRDA∗), the classic A∗ algorithm,
and the real-time adaptive A∗ (RTAA∗) were compared.
Table 3 presents the comparison of the experimental results of
the global path planning based on the existing static obstacle
information between the two algorithms, including the num-
ber of iterations, algorithm time consumption, number of path
nodes, and path cost.

Table 3 presents the average values obtained through
50 random initializations of the map and path planning.
As Table 3 suggests, compared with the classic A∗ algorithm

TABLE 3. Comparison of experimental results.

and the anytime repairing sparse A∗ (ARA∗) algorithm, the
modified BiRDA∗ algorithm provides shorter planning dura-
tion, fewer path nodes, and smaller path cost calculated when
the grid space divided by the grid method is large; however,
when the scale is small, its performance is not as good as that
of the ARA∗ algorithm.

Figure 4 indicates that some of the classic A∗ have shorter
time consumption because when the map is small, the two-
way search increases time consumption. ARA∗ is more suit-
able for small-scale situations than A∗; therefore, ARA∗ has
the best performance for the scale in Scheme 1. Figure 5 indi-
cates that some of the classic A∗ and ARA∗ have fewer
path nodes because when the map is small, the modified
search strategy with an angle removes some unqualified path
nodes. According to Figures 6–9, the overall performance
of the algorithm is relatively stable, and the small range of
fluctuations that occur are caused by the random initialization
of obstacles. The data above shows that the modified A∗ algo-
rithm has a better convergence speed, shorter path planned,
better performance, and better path for path planning on a
larger scale; however, when it is applied to a small scale, its
time consumption may increase, and its performance is not as
good as those of ARA∗ and classic A∗.

The task node information and dynamic threat information
are added after setting static obstacles for global path plan-
ning in the previous section. When the UAVs are executing
tasks such as surveillance, rescue, and delivery, they may
encounter interferences to their radar equipment, which are
considered threats. For these threats, two radii are randomly
initialized: One is the detection radius r0, and the other is the
reaction radius r1, r0 > r1 > 0.
Scheme 1: The number of dynamic threats is set to 100,

with random locations. The simulation results are presented
in Figures 8 and 9.

Scheme 2: The number of dynamic threats is set to 500,
with random locations. The simulation results are presented
in Figures 8 and 9.

Scheme 3: The number of dynamic threats is set to 1,000.
The simulation results are presented in Figures 8 and 9.

The corresponding parameters of the Q-learning algorithm
are generated by running dynamic path planning 1,000 times
in an environment with the same batch of dynamic obsta-
cles, and their optimal values are determined by the control
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TABLE 4. Parameters of Q-learning algorithm.

TABLE 5. Parameters of dynamic exploration factor.

TABLE 6. Experimental data design.

variable method and the binary search method. Consequently,
the parameters of the Q-learning algorithm are obtained,
as shown in Table 4, as well as the parameters of the dynamic
exploration factor, as shown in Table 5.

In this environment, the path planning simulation is
executed, and it is compared with the algorithm based
on Q-learning with a modified exploration mechanism
(AQ-learning). Table 6 presents the comparison of the per-
formance of the local path planning based on the exist-
ing dynamic threat information between the two algorithms,
including the number of iterations, algorithm time consump-
tion, and the number of path nodes, in the three schemes.

Table 6 presents the average values obtained through
50 random initializations of the map and 500 iterations of
path planning. Because the dynamic adjustment occurs after
the UAV global planning is completed, the adjustment extent
is small, so the iterations are set to 500 times to take the
average value. According to the results in the table, compared
with the classic Q-learning algorithm and the Sarsa algorithm,

FIGURE 10. Time consumption between algorithms in scheme 1.

FIGURE 11. Number of path nodes between algorithms in scheme 1.

FIGURE 12. Time consumption between algorithms in scheme 2.

the modified Q-learning algorithm has a shorter planning
duration and fewer path nodes, but it is not as stable as Sarsa.

As shown in Figure 10, Sarsa runs relatively stable when
the scale is small, and themodifiedQ-learning takes the short-
est time but is not as stable as Sarsa. Figure 11 indicates that
the modified Q-learning has fewer path nodes. According to
Figures 10, 12, and 14, the time consumption of the modified
Q-learning fluctuates greatly during dynamic path planning,
compared with those of the classic Q-learning and Sarsa. The
underlying reason is that although the explorationmechanism
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FIGURE 13. Number of path nodes between algorithms in scheme 2.

FIGURE 14. Time consumption between algorithms in scheme 3.

FIGURE 15. Number of path nodes between algorithms in scheme 3.

of Q-learning has been modified, there is still a certain prob-
ability for random selection, leading to great fluctuation.
Sarsa performs better when the map is large because it is
on-policy and infeasible actions are removed when selecting
actions. Therefore, its time consumption is better than that
of Q-learning at a large scale, but most modified algorithms
have advantages. According to Figures 11, 13, and 15, the
modified Q-learning algorithm can reduce the number of path
nodes to a certain extent. The above shows that the modified
Q-learning algorithm has been well modified in response
to the limitations of its exploration and exploitation, which
can better balance the relationship between exploration and
exploitation. When applied to UAV path planning, it also has
faster convergence speed and better overall performance.

FIGURE 16. Initial path.

FIGURE 17. Original path.

FIGURE 18. Smoothed path.

B. ANALYSIS OF SIMULATION RESULTS
Figure 16 presents the planned path map based on the model
in Chapter 2, which converts the latitude and longitude
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FIGURE 19. Path before and after smoothing.

coordinates of the UAV into three-dimensional coordinates
before rasterizing. Figure 19 presents the comparison of the
path after the cubic B-spline curve is smoothed.

According to Figures 17–19, the smoothed path has no
conflicts with the obstacles, and the overall transition of the
path is natural and significantly continuous without sharp
corners, which meets the requirements of continuous changes
in UAV speed and acceleration.

V. CONCLUSION
In this paper, the research background and key technical
problems of path planning were investigated. Through corre-
sponding assumptions, constraints, cost function, evaluation
indicators, environmental models, and simulation maps, a
global-local UAV path planning model was established, and
the effectiveness of the proposed model and algorithms was
verified. The main conclusions drawn are as follows:

(1) The global path planning algorithm based on the mod-
ified A∗ and the local path planning algorithm based on
the modified Q-learning have positive effects in reducing
algorithm time consumption, the number of path nodes, and
the path planning cost. Both are better than the classic A∗ and
Q-learning algorithms, with certain guiding significance for
UAV path planning.

(2) The proposed algorithm can deliver reasonable and
stable path planning for the assigned tasks. Therefore, the
proposed algorithm is feasible and effective for solving the
problem of UAV path planning.

(3) From the perspectives of the UAV path planning model
and corresponding constraint analysis, the proposed model
and algorithms are superior to the classic two-dimensional
model and the traditional static allocation algorithm (without
considering the dynamic threats). Moreover, the UAV envi-
ronment model considered is a three-dimensional space, and
the constraint analysis is more realistic and comprehensive.

Although the proposed model of UAV path planning con-
siders factors such as environment, constraint analysis, and
cost function, it lacks a collaborative model of UAV path
planning. It is crucial to propose a planning model with

multi-UAV collaboration. In addition, the modified explo-
ration mechanism method proposed in this paper adopts a
design of phased adjustment and employs some settings for
modification when implementing the dynamic exploration
factors. One can incorporate better andmore complex settings
to enhance the effectiveness of the algorithm.
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